Update on Interfacial Charge Transfer (IFTC) Processes on Films Inactivating Viruses/Bacteria under Visible Light: Mechanistic Considerations and Critical Issues

نویسندگان

چکیده

This review presents an update describing binary and ternary semiconductors involving interfacial charge transfer (IFCT) in composites made up by TiO2, CuO, Ag2O Fe2O3 used microbial disinfection (bacteria viruses). The mechanism, kinetics generation of reactive oxygen species (ROS) solution under solar/visible light are discussed. surface properties the photocatalysts their active catalytic sites described detail. Pathogenic biofilm inactivation photocatalytic thin films is addressed since biofilms most dangerous agents spreading pathogens into environment.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coupling of narrow and wide band-gap semiconductors on uniform films active in bacterial disinfection under low intensity visible light: implications of the interfacial charge transfer (IFCT).

This study reports the design, preparation, testing and surface characterization of uniform films deposited by sputtering Ag and Ta on non-heat resistant polyester to evaluate the Escherichia coli inactivation by TaON, TaN/Ag, Ag and TaON/Ag polyester. Co-sputtering for 120 s Ta and Ag in the presence of N₂ and O₂ led to the faster E. coli inactivation by a TaON/Ag sample within ∼40 min under v...

متن کامل

Visible-light-driven superhydrophilicity by interfacial charge transfer between metal ions and metal oxide nanostructures.

Single-crystalline rutile nanorods were synthesized by a facile acid treatment on titanate nanotubes. These rutile nanorods could be highly dispersed in water to form a stable colloidal solution. Cu(2+) ions were grafted onto these rutile nanorods, and the Cu(2+)-grafted nanorods could absorb visible light by the interfacial charge transfer between the valence band of rutile TiO(2) and surface-...

متن کامل

Visible light photocatalytic H₂-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer.

Visible light photocatalytic H(2) production through water splitting is of great importance for its potential application in converting solar energy into chemical energy. In this study, a novel visible-light-driven photocatalyst was designed based on photoinduced interfacial charge transfer (IFCT) through surface modification of ZnS porous nanosheets by CuS. CuS/ZnS porous nanosheet photocataly...

متن کامل

Interfacial Charge Transfer Anisotropy in Polycrystalline Lead Iodide Perovskite Films.

Solar cells based on organic-inorganic lead iodide perovskite (CH3NH3PbI3) exhibit remarkably high power conversion efficiency (PCE). One of the key issues in solution-processed films is that often the polycrystalline domain orientation is not well-defined, which makes it difficult to predict energy alignment and charge transfer efficiency. Here we combine ab initio calculations and photoelectr...

متن کامل

Enhanced photochemical activity of α-Fe2O3 films supported on SrTiO3 substrates under visible light illumination.

The visible light photochemical reactivity of a 50 nm thick α-Fe(2)O(3)(0001) (hematite) film on a SrTiO(3)(111) substrate is compared to the reactivities of bulk hematite and the same film supported by α-Al(2)O(3)(0001). The hematite film supported by SrTiO(3)(111) is far more reactive then the other two cases.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Catalysts

سال: 2021

ISSN: ['2073-4344']

DOI: https://doi.org/10.3390/catal11020201